

EMC Test Report

According to

Test Standard : EN IEC 61000-6-4:2019, IEC 61000-6-4:2018

EN IEC 61000-6-2:2019, IEC 61000-6-2:2016

EN IEC 61000-3-2:2019, IEC 61000-3-2:2018

EN 61000-3-3:2013+A1:2019, IEC 61000-3-3:2013+A1:2017

Equipment : MPPT SOLAR INVERTER

Model Number : VM IV-3600

Serial model : --

Applicant: : Voltronic Power Technology Corp.

No. 406, Xinhu 1st Road, Neihu District, Taipei, Taiwan,

R.O.C.

Test date : Mar 18, 2021 ~ Mar 21, 2021

Issue date : Mar 30, 2021

Statement:

· The test result is applied to test equipment unit (EUT) only.

 Without written approval of SERTC Testing Center Co., Ltd the test report shall not be reproduced except in full.

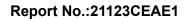
Rack Chiang/ / Approved Signatory

SERTC Testing Center Co., Ltd

No.230, Sec. 2, Fengshi Rd., Fengyuan Dist., Taichung City 420, Taiwan, R.O.C.

Report No.:21123CEAE1

History of this test report


Report No. Version		Description	Issue Date
21123CEAE1 Rev.1.0		Initial issue of report	Mar 30,2021

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page : 2 / 86

Contents

1.	General Description6
1.1	Application category6
1.2	Applied standards6
1.3	Basic Description of Equipment under Test7
1.4	The I/O ports of EUT are listed below :7
2.	Test configuration of EUT8
2.1	Test Manner8
2.2	General requirement of test8
2.3	Layout of the Setup9
2.4	Test software11
2.5	Immunity Testing Performance Criteria Definition11
2.6	General Information of Test12
3.	Conducted Emission Measurement14
3.1	Limits for Emission Measurement14
3.2	Test Procedures15
3.3	Test Configurations
3.4	Photographs of the Test Configurations – Charge mode and stored energy mode17
3.5	Photographs of the Test Configurations – PV mode
3.6	Test Results and data19
4.	Radiated Emission Measurement25
4.1	Limits for Emission Measurement25
4.2	Test Procedures 27
4.3	Test Configurations
4.4	Photographs of the Test Configurations– Charge mode and stored energy mode29
4.5	Photographs of the Test Configurations- PV mode
4.6	Test Results and data31
5.	Harmonic Current Emission Measurement37
5.1	Limits for Emission Measurement
5.2	Test Procedures

5.3	Test Configurations	39
5.4	Photographs of the Test Configurations	39
5.5	Test Results and data	40
6.	Voltage Fluctuations and Flickers Emission Measurement	42
6.1	Limits for Emission Measurement	42
6.2	Test Procedures	43
6.3	Test Configurations	44
6.4	Photographs of the Test Configurations	44
6.5	Test Results and data	45
7.	Electrostatic Discharge (ESD) Immunity Test	46
7.1	Specifications of Immunity Test Requirement	46
7.2	Test Severity Levels	47
7.3	Test Procedures	48
7.4	Test Configurations	50
7.5	Photographs of the Test Configurations	50
7.6	Test Results	51
7.7	Photographs of the Test Points on the EUT for ESD Test	53
8.	Radiated Electromagnetic Field (RS) Immunity Test	56
8.1	Test Requirement	56
8.2	Test Severity Level	56
8.3	Test Procedures	57
8.4	Test Configurations	58
8.5	Photographs of the Test configurations	58
8.6	Test Result and Data	59
9.	Electrical fast transient / burst (EFT) Immunity Test	60
9.1	Test Procedure	60
9.2	Test Severity Levels	61
9.3	Test Configurations	61
9.4	Photographs of the Test Configurations	62
9.5	Test Result and Data	63
10.	Surge Immunity Test	64

Report No.:21123CEAE1

10.1 Test Procedure 10.2 Test Severity Level	65 65 66 67
10.3 Test Configurations10.4 Photographs of the Test Configurations	65 66 67
10.4 Photographs of the Test Configurations	66 67
	67
10.5 Test Result and Data	
	68
11. Conducted disturbances (CS) Immunity Test	
11.1 Test Procedure	68
11.2 Test Severity Levels	69
11.3 Test Configurations	69
11.4 Photographs of the Test Configurations	70
11.5 Test Result and Data	71
12. Power frequency magnetic field (PFM) Immunity Test	72
12.1 Test Procedure	72
12.2 Test Severity Levels	73
12.3 Test Configurations	73
12.4 Photographs of the Test Configurations	74
12.5 Test Result and Data	75
13. Voltage Dips and Voltage Interruptions Immunity	76
13.1 Test procedure	76
13.2 Test severity	77
13.3 Test Configurations	77
13.4 Photographs of the Test Configurations	78
13.5 Test Result and data	79
14. List of Measuring Equipment	80
15. Measurement Uncertainty	83
16. Attachment 1 – Photographs of EUT	84

1. **General Description**

1.1 Application category

■New application	This document is new applicant.	
□Copy report	This document originally test result as :	
	· Issue unit:	
	· Report number:	
□Application for change	Addition of series or others.	
	· Original Report number:	

1.2 Applied standards

According to the specifications of the manufacturer and the requirements set in European Council EMC Directive 2014/30/EU, the applied standards to evaluate the compliance of the EUT are as following:

Applied Standards	Test Items	Results
EN IEC 64000 6 4/2040	Conducted Emission Measurement	<u>Complied</u>
EN IEC 61000-6-4:2019	150k-30MHz	<u>oomphou</u>
IEC 61000-6-4:2018	Radiated Emission Measurement 30M-	Complied
	1GHz	<u>complica</u>
EN IEC 61000-3-2:2019	Harmonic Current Emission	Complied
IEC 61000-3-2:2018	Measurement	Compiled
EN 61000-3-3:2013+A1:2019	Voltage Fluctuation and Flicker	Complied
IEC 61000-3-3:2013+A1:2017	Emission Measurement	<u>Complied</u>
EN IEC 61000-6-2	::2019, IEC 61000-6-2:2016	
EN 61000-4-2:2009	Electrostatic discharge Test (ESD)	Complied
IEC 61000-4-2:2008	Electrostatic discharge Test (ESD)	<u>Complied</u>
EN 61000-4-3:2006+A2:2010	Radiated electromagnetic field	Complied
IEC 61000-4-3:2006+A1:2007+A2:2010	immunity Test (RS)	<u>Complied</u>
EN 61000-4-4:2012	Electrical fast transient / burst immunity	Complied
IEC 61000-4-4:2012	Test (EFT)	<u>Complied</u>
EN 61000-4-5:2014+A1:2017	Commo imamo unito Tont	Complied
IEC 61000-4-5:2014+A1:2017	Surge immunity Test	
EN 61000-4-6:2014	Immunity to conducted disturbances,	Comentied
IEC 61000-4-6:2013	induced by radio-frequency fields (CS)	<u>Complied</u>
EN 61000-4-8:2010	Power frequency magnetic field	Comentied
IEC 61000-4-8:2009	immunity Test (PFM)	<u>Complied</u>
IEC 61000-4-34:2009	Valta and discount in the new vertices. Total	Comentied
EN 61000-4-34:2007+A1:2009	Voltage dips, short interruptions Test	<u>Complied</u>

SERTC Testing Center Co., Ltd. Page: 6 / 86

1.3 Basic Description of Equipment under Test

Equipment	MPPT SOLAR INVERTER		
Trade Name	N/A		
Model Number	VM IV-3600		
Serial model			
	Battery Input: 24Vdc.		
Dower Supply Type	AC Input:230V.		
Power Supply Type	PV:400Vdc.		
	AC Output: 230V/50Hz Max, 3600VA/3600W, 1 ∮ +PE		
Highest Operating Frequency	19.2K		
Function description	The EUT is an engineer sample of the MPPT SOLAR INVERTER. Please refer to the user's manual for the details.		

1.4 The I/O ports of EUT are listed below:

No.	Port Type	Quantity
1	AC input port	1
2	AC output port	1
3	DC port (+,-)	1
4	PV port (+,-)	1
5	RJ45 (RS-232/RS-485) port	2
6	Micro USB port	1
7	Dry contact	1

SERTC Testing Center Co., Ltd. Page: 7 / 86

2. Test configuration of EUT

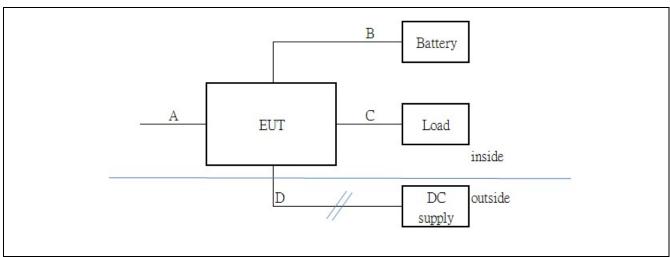
2.1 Test Manner

a. During testing, the interface cables and equipment positions were varied according to Europe Standard EN 61000-6-2 and EN 61000-6-4

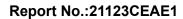
Conducted Emission for AC main power			
Test Mode 1	Charge and normal mode, full load		
Test Mode 2	Stored Energy mode, full load		
Test Mode 3	PV mode, full load		
Radiated Emis	sions for below 1GHz		
Test Mode 1	Charge and normal mode, full load		
Test Mode 2	Stored Energy mode, full load		
Test Mode 3	PV mode, full load		
Harmonic and Flicker Emissions			
Test Mode 1	Charge and normal mode, full load		
Immunity Test (ESD, RS, EFT, SURGE, CS, PFM, DIP)			
Test Mode 1	Charge and normal mode, full load		

2.2 General requirement of test

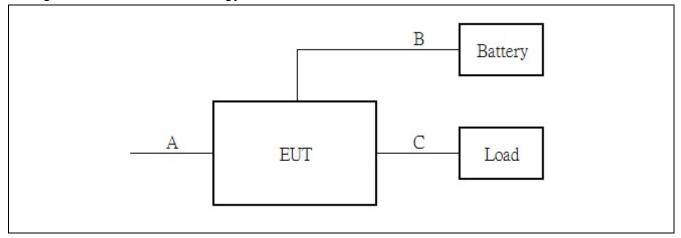
The EUT is an unique unit connected with other necessary accessories and support units listed in the next section. It has been tested against each standard after the following setup steps:


- a. Connect the Dummy Load to the EUT.
- b. Connect the EUT to the appropriate power source through power filter or other LISN in different site for each test item.
- c. Set the Dummy Load at the assigned condition.
- d. According to the setup methods designated by its manufacturer, set the EUT in the operating condition.
- e. Repeat and keep the setup steps listed above before and during all tests.

SERTC Testing Center Co., Ltd. Page: 8 / 86


2.3 Layout of the Setup

PV mode for Radiated emission and conducted emission test


The Support Units:

No.	Link Peripheral	Manufactu rer	Model No.	FCC ID	Description of connected
For L	ocal				
1	Main AC input				A , non-shield cable Length 1.8m
2	Battery pack				B, non-shield cable Length 0.5 m
3	Light bulb load				C, non-shield cable Length 1.0 m
4	DC supply unit				D, non-shield cable Length 10 m

Charge mode and Stored energy mode for all test

The Support Units:

No.	Link Peripheral	Manufacturer	Model No.	FCC ID	Description of connected
For l	_ocal				
1	Main AC input				A , non-shield cable Length 1.8m
2	Battery pack				B, non-shield cable Length 0.5 m
3	Light bulb load				C, non-shield cable Length 1.0 m

2.4 Test software

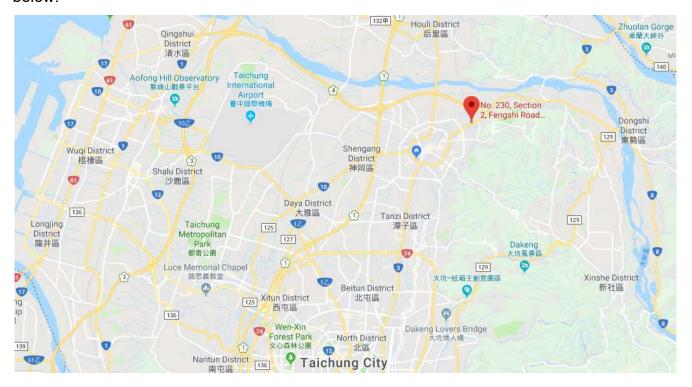
The EUT no needs to control by others software.

2.5 Immunity Testing Performance Criteria Definition

- a) Performance criterion A: The EUT shall continue to operate as intended during and after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the EUT is used as intended. If the performance level is not specified by the manufacturer, this may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.
- b) Performance criterion B: The EUT shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer, when the EUT is used as intended. The performance level may be replaced by a permissible loss of performance. However, during the test degradation of performance is allowed but no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, either of these may be derived from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.
- c) **Performance criterion C**: Temporary loss of function is allowed during the test, provided the function is self-recoverable or can be restored by the operation of the controls.

SERTC Testing Center Co., Ltd. Page: 11 / 86 TEL.: 886-4-25253313

FAX.: 886-4-25252320



2.6 General Information of Test

Location of test laboratory

SERTC testing Laboratory	Accrediations
Address: No. 230, Sec. 2, Fengshi Rd., Fengyuan Dist., Taichung City 420, Taiwan,	TAF No. 3625
R.O.C.	
Tel: +886-04-25253313	
Fax:+886-04-25252320	

The map shows location of the SERTC Testing Laboratory proximity to the Tai-Chung city as below:

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4,ANSI,C63.4:2014+ANSI C63.4a:2017.

Test Room	Type of Test Room	Descriptions
		Complying with the NSA and the site VSWR
		requirements in documents CISPR 16-1-4 and ANSI
CB1	3m semi-anechoic chamber	C63.4:2014+ANSI C63.4a:2017, for the radiated
		emission measurements, and Radiated susceptibility
		test.
CB2	Shielding Room	For the conducted emission measurement.
TR1	Plane Grounding Site	For the conducted susceptibility test.
TR2	Plane Grounding Site	For the Current Harmonic / Voltage Flicker and other immunity tests.
TR3	Plane Grounding Site	For the Surge, Electrical fast transient and Power frequency magnetic field immunity test.

SERTC Testing Center Co., Ltd. Page: 13 / 86

3. Conducted Emission Measurement

3.1 Limits for Emission Measurement

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 kHz and return leads of the EUT according to the methods defined in European Standard IEC61000-6-4. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position producing maximum conducted emissions.

Table 1 Conducted Emission Limits(dBµV):

Frequency	AC main port		DC port	
range (MHz)	Quasi Peak	Average	Quasi Peak	Average
0.15 to0.50	79	66	89	76
0.50 to5	73	60	83	70
5. to 30.	73	60	83	70

Note 1: The lower limits shall apply at the transition frequencies.

Note 2:The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5MHz.

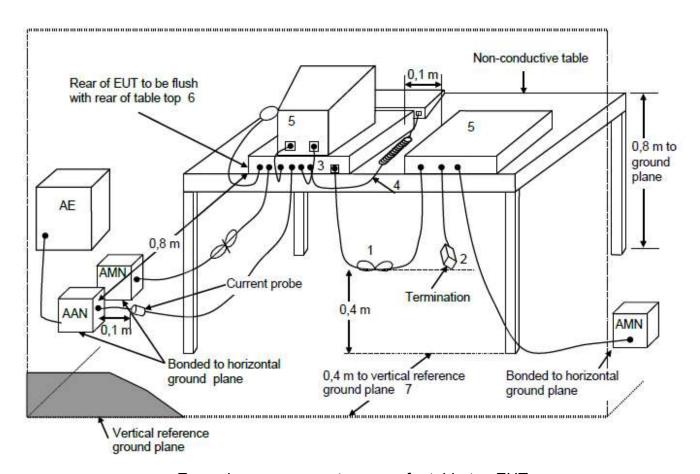
Table 2 - Limits of conducted common mode (asymmetric mode) disturbance in the frequency range 0.15 MHz to 30 MHz (dBµV).

Frequency	Wired network port			
range	Voltage		Current	
(MHz)	Quasi Peak	Avg.	Quasi Peak	Avg.
0.15 to 0.5	97~ 87	84~74	53~43	40~30
0.5 to 5	87	74	43	30
5 to 30	87	74	43	30

Note 1: The limits decrease linearly with the logarithm of the frequency in the range 0.15 to 0.5 MHz.

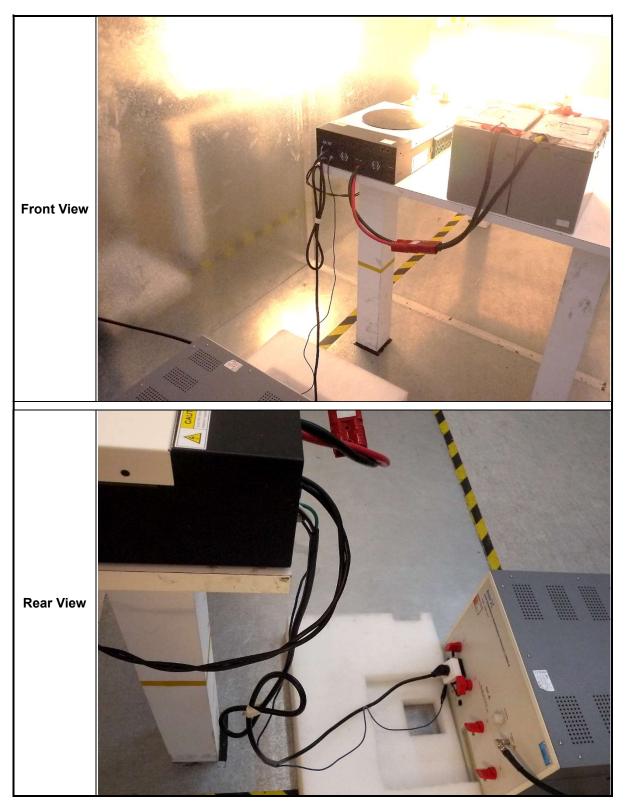
Note 2 : The current and voltage disturbance limits are derived for use with an impedance stabilization network (ISN) which presents a common mode (asymmetric mode) impedance of 150Ω to the telecommunication under test (conversion factor is $20 \log_{10} 150/1 = 44 dB$).

SERTC Testing Center Co., Ltd. Page: 14 / 86

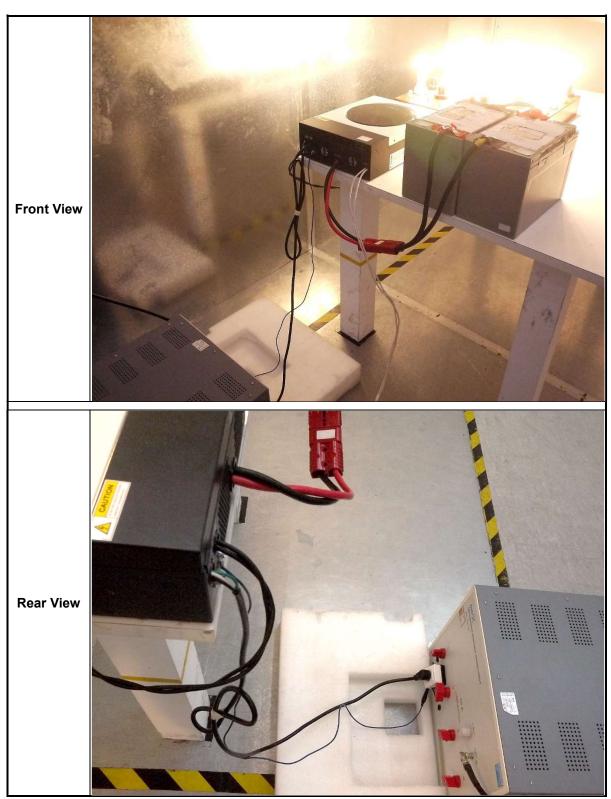

3.2 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the reference ground plane and 0.4 meters from the conducting wall of the shielded room. Also if the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to0.15 meters above the reference ground plane.
- c. Connect the EUT's power source / telecommunication lines to the appropriate power mains / peripherals through the LISN / ISN.
- d. All the other peripherals are connected to the 2nd LISN, if any.
- e. The LISN / ISN was placed 0.8 meters from the EUT and at least 0.8 meters from other units and other metal planes.
- f. Measure the conducted emissions on each power line (Neutral Line and Line 1 Hot side) of the EUT's power source by using the test receiver connected to the coupling RF output port of LISN.
- g. Rapidly scan the signal from 150kHz to 30MHz by using the receiver through the Maximum-Peak detector to determine those frequencies associated with higher emission levels for each measured line.
- h. Then measure the maximum level of conducted disturbance for each frequency found from step g. by using the receiver through the Quasi-Peak and Average detectors per CISPR 16-1.
- i. Record the level for each frequency and compare with the required limit.
- j. If required, measure the conducted emissions on telecommunication lines of EUT by using the test receiver connected to the coupling RF output port of ISN and repeat step g. to i.
- k. If the peak emission level is lower than the specified Average limit, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. or Average values will be measured and presented.

SERTC Testing Center Co., Ltd. Page: 15 / 86

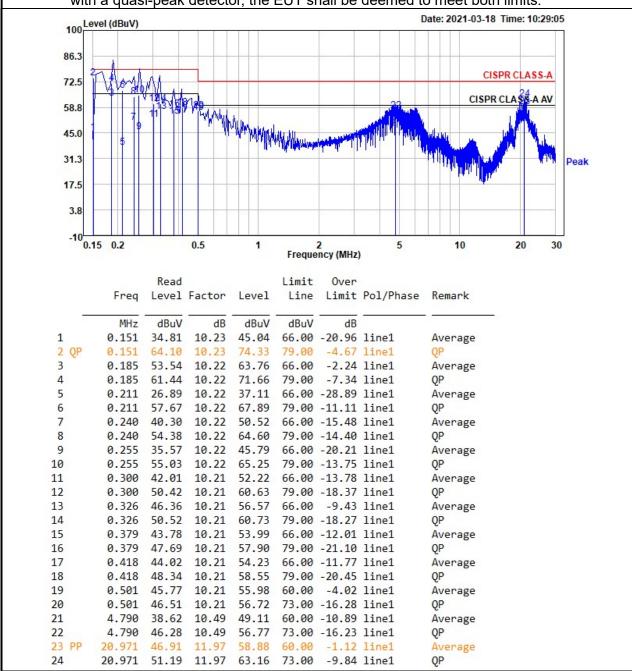

3.3 **Test Configurations**

Example measurement arrange for table-top EUT



3.4 Photographs of the Test Configurations – Charge mode and stored energy mode

3.5 Photographs of the Test Configurations – PV mode

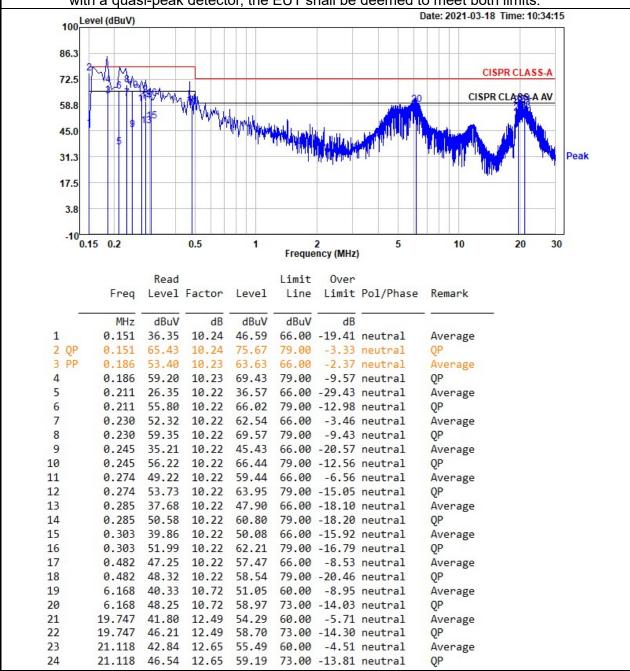

3.6 Test Results and data

Conducted Emission for Power Port Test Data

Test Mode	Mode 1	Pol/Phase	Line1
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	230Vac/50Hz
Test Date	Mar 18,2021	Test Engineer	David
Temperature	22 °C	Relative Humidity	67%

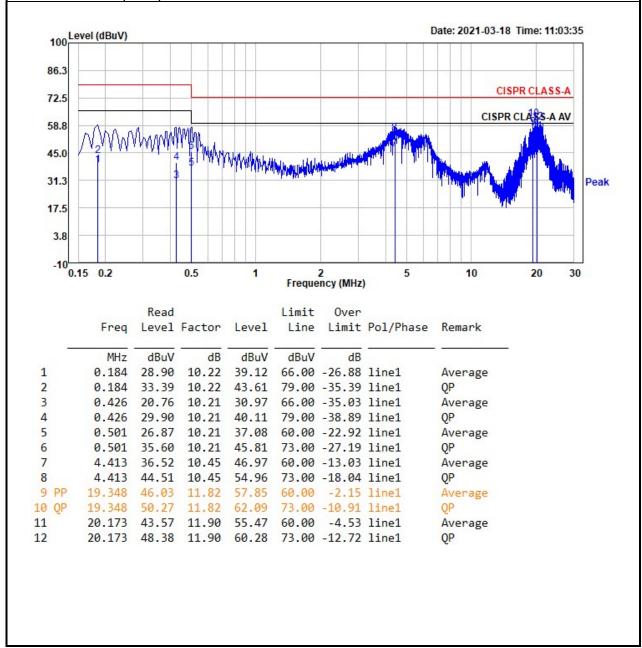
Note:

- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.
- 4. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the EUT shall be deemed to meet both limits.

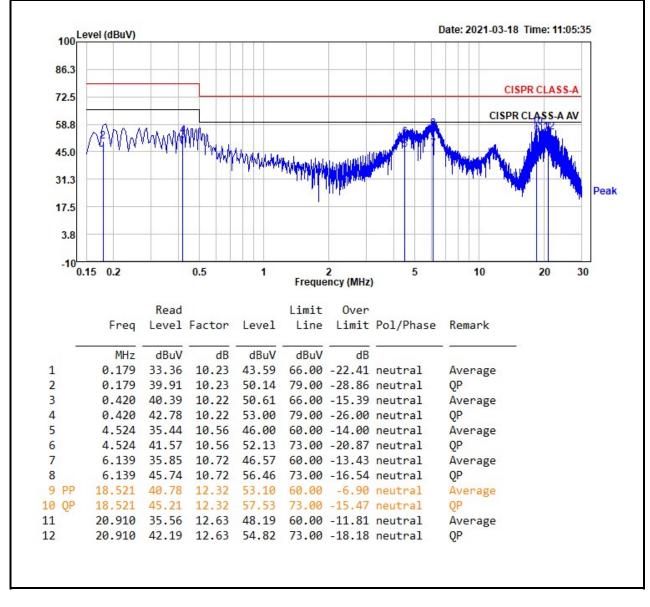


SERTC Testing Center Co., Ltd.

Test Mode	Mode 1	Pol/Phase	Neutral
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	230Vac/50Hz
Test Date	Mar 18,2021	Test Engineer	David
Temperature	22 °C	Relative Humidity	67%


- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.
- 4. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the EUT shall be deemed to meet both limits.

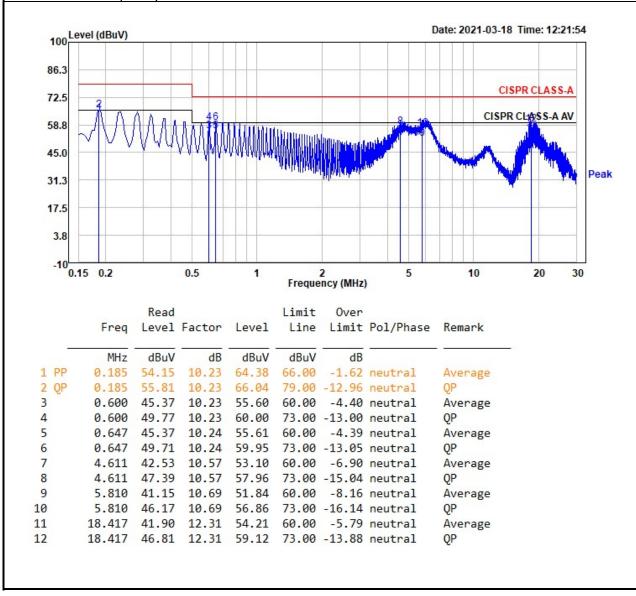
Test Mode	Mode 2	Pol/Phase	Line 1
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	230Vac/50Hz
Test Date	Mar 18,2021	Test Engineer	David
Temperature	22 °C	Relative Humidity	67%


- 1. Emission Level = reading value + correction factor.
- Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.
- 4. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the EUT shall be deemed to meet both limits.

Test Mode	Mode 2	Pol/Phase	Neutral
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	230Vac/50Hz
Test Date	Mar 18,2021	Test Engineer	David
Temperature	22 °C	Relative Humidity	67%

- 1. Emission Level = reading value + correction factor.
- Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.
- 4. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the EUT shall be deemed to meet both limits.

Test Mode	Mode 3	Pol/Phase	Line1
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	230Vac/50Hz
Test Date	Mar 18,2021	Test Engineer	David
Temperature	22 °C	Relative Humidity	67%


- 1. Emission Level = reading value + correction factor.
- Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.
- 4. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the EUT shall be deemed to meet both limits.

Test Mode	Mode 3	Pol/Phase	Neutral
Test Frequency	0.15 MHz ~ 30 MHz	Test Voltage	230Vac/50Hz
Test Date	Mar 18,2021	Test Engineer	David
Temperature	22 °C	Relative Humidity	67%

- 1. Emission Level = reading value + correction factor.
- Correction factor = cable loss + insertion loss of LISN.
- 3. Q.P. is abbreviation of quasi-peak.
- 4. If the limit for the measurement with the average detector is met when using a receiver with a quasi-peak detector, the EUT shall be deemed to meet both limits.

4. Radiated Emission Measurement

4.1 Limits for Emission Measurement

The EUT shall meet the limits of below Table when measured at the measuring distance R in accordance with the methods described in IEC 61000-6-4. If the reading on the measuring receiver shows fluctuations close to the limit, the reading shall be observed for at least 15 s at each measurement frequency; the highest reading shall be recorded, with the exception of any brief isolated high reading, which shall be ignored.

Required highest frequency for radiated measurement

Highest internal frequency	Highest measured frequency	
(F _x)		
Fx ≤ 108 MHz	1 GHz	
108 MHz < F _x ≤ 500 MHz	2 GHz	
500 MHz < F _x ≤1GHz	5 GHz	
F _x >1GHz 5 x F _x up to a maximum of 6 GHz		
NOTE 1 Where the highest internal frequency is not known, tests are performed up to 6 GHz.		
NOTE 2 Fx is defined in 3.1.10		

Where the F_x is unknown, the radiated emission measurements shall be performed up to 6 GHz.

Table 1 – Limits for radiated disturbance at a measuring distance of 10 m (dB(μV/m))

Frequency range(MHz)	Limit
,	Quasi-peak
30 to 230	40
230 to 1000	47

Note: Allowed measurement distances: 3 m, 5 m, 10 m or 30 mFor equipment meeting the size criterion defined in 3.1.11, the measurements may be performed at the 3 m distance. Note this size criterion is currently under discussion.

Where a different measurement distance is chosen, other than the reference distance defined in the limit column of Table 1, the limits shall be offset based upon the following formula:

new limit = defined limit - 20 log (measurement distance/reference distance)

The unit of metres shall be used for distance and $dB(\mu V/m)$ for the limits. With regard to each table clause, the measurements shall be performed at only one distance.

SERTC Testing Center Co., Ltd. Page: 25 / 86

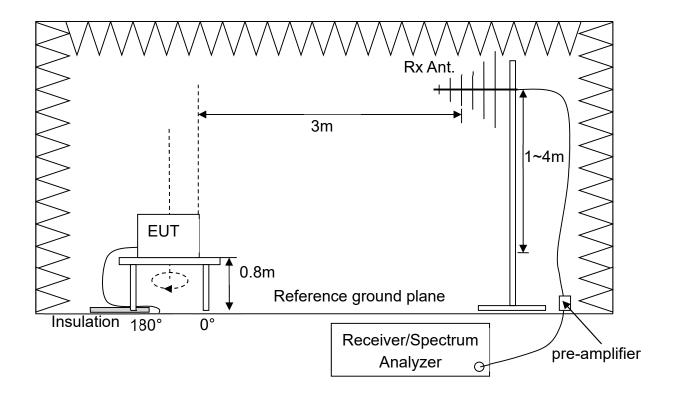
Table 2 – Limits for radiated disturbance at a measuring distance of 3 m (dB (µV/m))

Frequency range	Limit		
(GHz)	Avg.	Peak	
1 to 3	56	76	
3 to 6	60	80	
NOTE The lower limit applies at the transition frequency.			

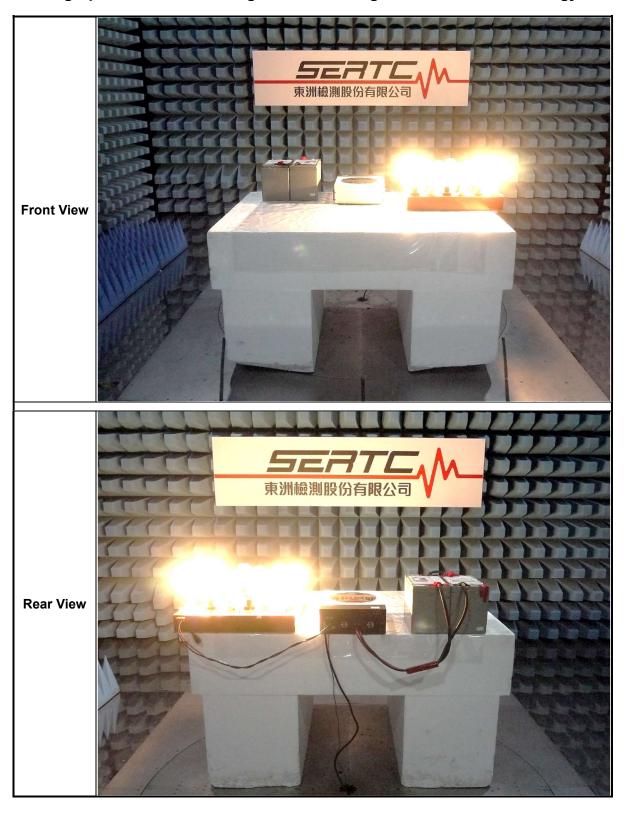
SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page: 26 / 86

4.2 Test Procedures

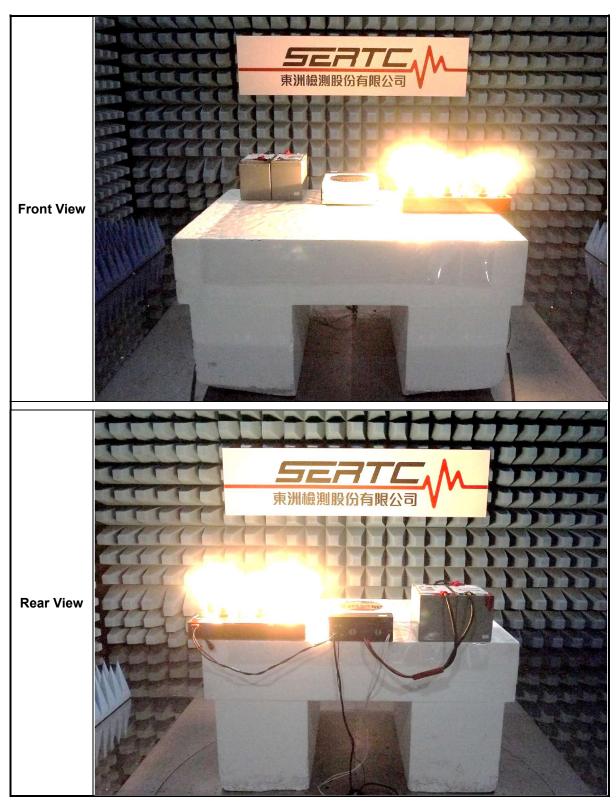
Below 1GHz measurement


- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a rotatable table with a height of 0.8 meters above the reference ground planeand3 meters away from the interference receiving antenna in the semi-anechoic chamber.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height up to 0.15 meters above the reference ground planeand 3 meters away from the interference-receiving antenna in the semi-anechoic chamber.
- d. Rapidly sweep the signal from 30MHz to 1GHz by using the spectrum through the Maximum-peak detector.
- e. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4 meters above the reference ground plane continuously to determine at least three frequencies associated with higher emission levels and record them.
- f. Then measure each frequency found from step e. by using the spectrum with rotating the EUT and positioning the receiving antenna height to determine the maximum level.
- g. Finely tune the antenna and turntable around the recorded position of each frequency found from step f. by using the receiver through the Quasi-Peak detector per CISPR 16-1 to find out where the maximum level occurred.
- h. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving antenna and compare the maximum level with the required limit.
- i. Change the receiving antenna to another polarization to measure radiated emission by following step d. to h. again.
- j. If the peak emission level measured from step e. is 4dB lower than the limit specified, then the emission values presented will be the peak value only. Otherwise, accurate Q.P. value will be measured and presented.

SERTC Testing Center Co., Ltd. Page: 27 / 86

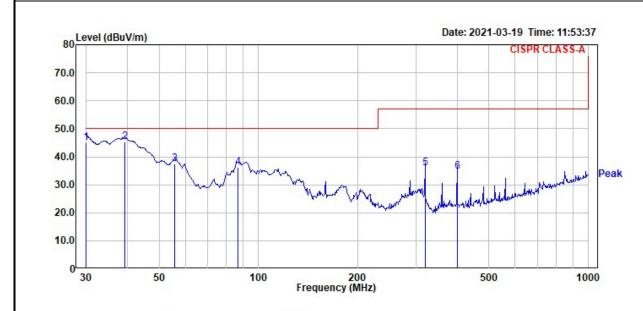

4.3 **Test Configurations**

Below 1GHz measurement



4.4 Photographs of the Test Configurations- Charge mode and stored energy mode

4.5 Photographs of the Test Configurations- PV mode

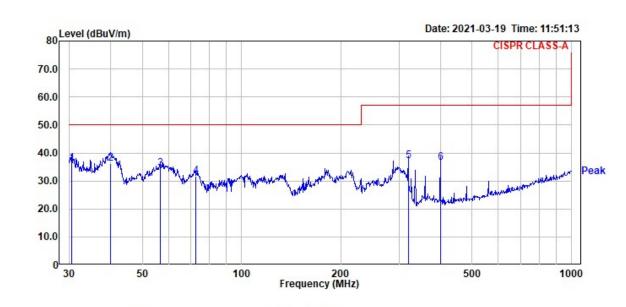


4.6 Test Results and data

Test Mode	Mode1	Pol/Phase	Vertical
Test Frequency	30 MHz ~ 1GHz	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	21 °C	Relative Humidity	43%

Note:

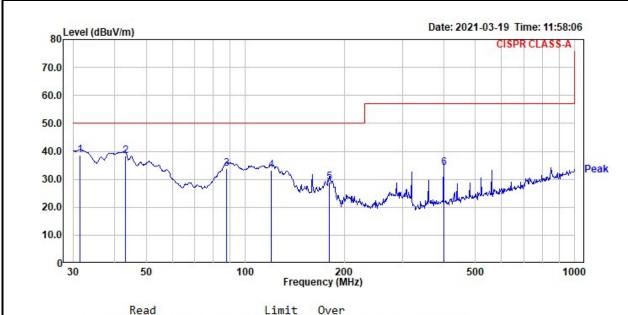
- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- 3. Q.P is abbreviation of quasi-peak.



	Freq	Read Level	Factor	Level	Limit Line		Pol/Phase	Remark
12	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	<u> </u>	
1	30.043	49.65	-4.64	45.01	50.00	-4.99	vertical	QP
2	39.299	56.99	-11.74	45.25	50.00	-4.75	vertical	QP
3	55.805	56.36	-18.90	37.46	50.00	-12.54	vertical	QP
4	86.807	54.82	-18.65	36.17	50.00	-13.83	vertical	QP
5	319.937	47.24	-11.21	36.03	57.00	-20.97	vertical	QP
6	400.432	44.04	-9.19	34.85	57.00	-22.15	vertical	QP

Test Mode	Mode 1	Pol/Phase	Horizontal
Test Frequency	30 MHz ~ 1GHz	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	21 °C	Relative Humidity	43%

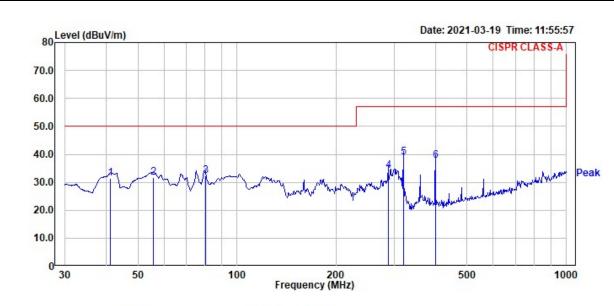
- 1. Emission Level = reading value + correction factor.
- 2. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- B. Q.P is abbreviation of quasi-peak.



	Freq	Read Level	Factor	Level		Over Limit	Pol/Phase	Remark
8	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	-	-
1	30.531	41.05	-4.91	36.14	50.00	-13.86	horizontal	QP
2	40.058	48.78	-12.51	36.27	50.00	-13.73	horizontal	QP
3	56.593	53.37	-18.83	34.54	50.00	-15.46	horizontal	QP
4	72.592	49.72	-17.97	31.75	50.00	-18.25	horizontal	QP
5	319.937	48.20	-11.21	36.99	57.00	-20.01	horizontal	QP
6	400.432	45.82	-9.19	36.63	57.00	-20.37	horizontal	QP

Test Mode	Mode 2	Pol/Phase	Vertical
Test Frequency	30 MHz ~ 1GHz	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	21 °C	Relative Humidity	43%

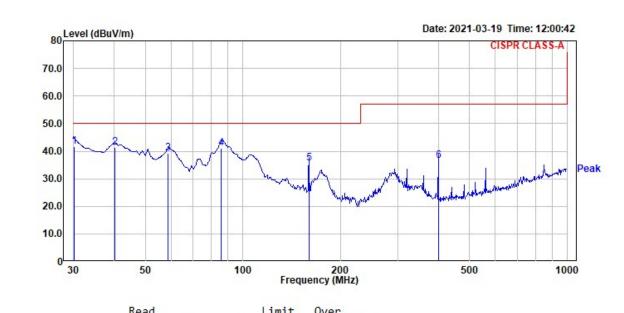
- 1.
- Emission Level = reading value + correction factor. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- Q.P is abbreviation of quasi-peak.



	Freq	Level	Factor	Level	Line	Limit	Pol/Phase	Remark
=	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		
1	31.510	44.27	-5.57	38.70	50.00	-11.30	vertical	QP
2	43.202	53.06	-14.74	38.32	50.00	-11.68	vertical	QP
3	87.725	52.49	-18.59	33.90	50.00	-16.10	vertical	QP
4	119.856	45.17	-11.98	33.19	50.00	-16.81	vertical	QP
5	180.017	43.49	-14.49	29.00	50.00	-21.00	vertical	QP
6	400.432	43.37	-9.19	34.18	57.00	-22.82	vertical	QP

Test Mode	Mode 2	Pol/Phase	Horizontal
Test Frequency	30 MHz ~ 1GHz	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	21 °C	Relative Humidity	43%

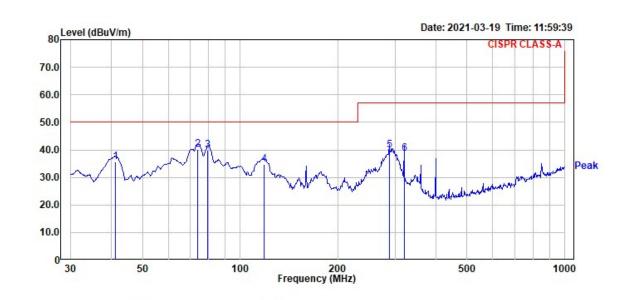
- 1.
- Emission Level = reading value + correction factor. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- Q.P is abbreviation of quasi-peak.



	Frea	Read Level	Factor	Level		Over Limit	Pol/Phase	Remark
					dBuV/m			
1							horizontal	QP
2	55.805	50.50	-18.90	31.60	50.00	-18.40	horizontal	QP
3	80.081	50.70	-18.49	32.21	50.00	-17.79	horizontal	QP
4	287.990	46.18	-11.94	34.24	57.00	-22.76	horizontal	QP
5	319.937	50.25	-11.21	39.04	57.00	-17.96	horizontal	QP
6	400.432	47.07	-9.19	37.88	57.00	-19.12	horizontal	QP

Test Mode	Mode 3	Pol/Phase	Vertical
Test Frequency	30 MHz ~ 1GHz	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	21 °C	Relative Humidity	43%

- 1.
- Emission Level = reading value + correction factor. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- Q.P is abbreviation of quasi-peak.



	Freq	Level	Factor	Level		Limit	Pol/Phase	Remark	
-	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	-	-	-
1	30.253	46.37	-4.76	41.61	50.00	-8.39	vertical	QP	
2	40.276	53.89	-12.68	41.21	50.00	-8.79	vertical	QP	
3	58.819	58.15	-18.81	39.34	50.00	-10.66	vertical	QP	
4	85.898	59.73	-18.71	41.02	50.00	-8.98	vertical	QP	
5	159.784	49.18	-13.47	35.71	50.00	-14.29	vertical	QP	
6	400.432	45.74	-9.19	36.55	57.00	-20.45	vertical	QP	

Test Mode	Mode 3	Pol/Phase	Horizontal
Test Frequency	30 MHz ~ 1GHz	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	21 °C	Relative Humidity	43%

- 1.
- Emission Level = reading value + correction factor. Correction factor = cable loss + antenna factor gain of pre-amplifier.
- Q.P is abbreviation of quasi-peak.

	Freq	Read Level	Factor	Level		Over Limit	Pol/Phase	Remark
1					dBuV/m		horizontal	
							horizontal	
3	79.243	58.12	-18.40	39.72	50.00	-10.28	horizontal	QP
4	118.186	46.89	-12.17	34.72	50.00	-15.28	horizontal	QP
5	287.990	51.77	-11.94	39.83	57.00	-17.17	horizontal	QP
6	319.937	49.94	-11.21	38.73	57.00	-18.27	horizontal	QP

5. Harmonic Current Emission Measurement

5.1 Limits for Emission Measurement

Limits for Class A equipment			
Harmonics	Max. Permissible		
Order	Harmonics current		
n	Α		
Odd	l harmonics		
3	2.30		
5	1.14		
7	0.77		
9	0.40		
11	0.33		
13	0.21		
15<=n<=39	0.15×15/n		
Ever	n harmonics		
2	1.08		
4	0.43		
6	0.30		
8<=n<=40	0.23×8/n		

Limits for Class D equipment				
Harmonics	Max. Permissible	Max. Permissible		
Order	Harmonics current per	Harmonics current		
n	Watt mA/W	Α		
Odd Harmonics only				
3	3.4	2.30		
5	1.9	1.14		
7	1.0	0.77		
9	0.5	0.40		
11	0.35	0.33		
13	0.30	0.21		
15<=n<=39	3.85/n	0.15 x15/n		

NOTE:

- 1. Class A and Class D are classified according to item section 5 of EN IEC 61000-3-2:2019.
- According to EN IEC 61000-3-2:2019, the above limits for all equipment except for lighting equipment are for all applications having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

Test requirement:

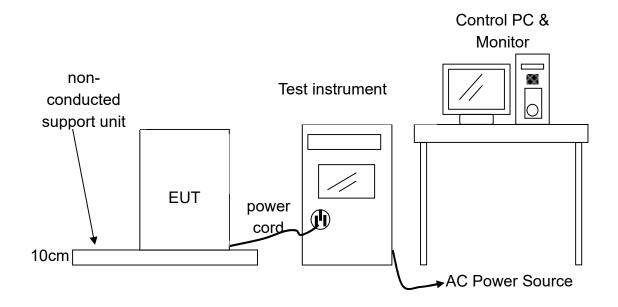
The repeatability of the average value for the individual harmonic currents over the entire test observation period shall be better than ±5 % of the applicable limit, when the following conditions are met:

- the same equipment under test (EUT) (not another of the same type, however similar);
- identical test conditions;
- the same test system;
- identical climatic conditions, if relevant.

NOTE

This repeatability requirement serves the purpose of defining the necessary observation period, see 6.2.4. It is not intended to serve as a pass/fail criterion for the assessment of compliance with the requirements of this standard.

SERTC Testing Center Co., Ltd. Page: 37 / 86


5.2 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters in the shielded room.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters in the shielded room.
- d. Decide the classification of the EUT as following:
 - Class A: balanced three-phase equipment
 - household appliances, excluding equipment identified as class D
 - tools, excluding portable tools
 - dimmers for incandescent lamps
 - audio equipment
 - equipments not specified in one of the three other classes
 - Class B: portable tools
 - arc welding equipment which is not professional equipment.
 - Class C: lighting equipment
 - **Class D : -** Equipment specified power less than or equal to 600W of the following types:
 - personal computers and personal computer monitors
 - television receivers
 - refrigerators and freezers having one or more variable-speed drives to control compressor motor(s).
- e. Connects the EUT's power source to the mains power supplied by the test instrument. Turn on the EUT.
- f. Operating the EUT as required and measuring the harmonic current emissions on the current carrying lines of EUT's power source.

SERTC Testing Center Co., Ltd. Page: 38 / 86

5.3 **Test Configurations**

5.4 Photographs of the Test Configurations

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

5.5 Test Results and data

Test Mode	Mode1	Final Test Result	Pass
Basic Standard	IEC61000-3-2	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23 °C	Relative Humidity	62%
Test frequency	50Hz	Test time	3 minutes
Max watts	3.626kW	Ref. Max Current	16.014A
Classification	Class A	Rsce	

Test information					
Average Peak Limit					
THC	423.972mA	480.434mA	N/A		
POHC	88.385mA	93.585mA	307.866mA		
Voltage Crest Factor	1.409	1.411	N/A		
Current Crest Factor	1.474	1.53	N/A		

	Harmonic results						
Harmonic	Status	Avg (A)	Avg L(A)	Avg %ofL	Peak (A)	Peak L(A)	Peak %ofL
1	PASS	15.959	No Limit	N/A	16.014	No Limit	N/A
2	PASS	0.27397	1.08	25.3676	0.31566	1.62	19.4852
3	PASS	0.21462	2.3	9.3313	0.2472	3.45	7.16522
4	PASS	0.18437	0.43	42.8767	0.2014	0.645	31.2248
5	PASS	0.16766	1.14	14.707	0.19043	1.71	11.1363
6	PASS	0.10614	0.3	35.38	0.11994	0.45	26.6533
7	PASS	0.099074	0.77	12.8668	0.11281	1.155	9.7671
8	PASS	0.081218	0.23	35.3122	0.097136	0.345	28.1554
9	PASS	0.086919	0.4	21.7298	0.098052	0.6	16.342
10	PASS	0.061105	0.184	33.2092	0.079675	0.276	28.8678
11	PASS	0.097106	0.33	29.4261	0.11276	0.495	22.7798
12	PASS	0.054893	0.15333	35.8006	0.070162	0.229995	30.5059
13	PASS	0.060597	0.21	28.8557	0.075142	0.315	23.8546
14	PASS	0.06416	0.13143	48.8169	0.080542	0.197145	40.8542
15	PASS	0.083186	0.15	55.4573	0.10113	0.225	44.9467

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page: 40 / 86

Test Mode	Mode1	Final Test Result	Pass
Basic Standard	IEC61000-3-2	Test Voltage	230Vac/50Hz
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23 °C	Relative Humidity	62%
Test frequency	50Hz	Test time	3 minutes
Max watts	3.626kW	Ref. Max Current	16.014A
Classification	Class A	Rsce	

	Harmonic results						
Harmonic	Status	Avg (A)	Avg L(A)	Avg %ofL	Peak (A)	Peak L(A)	Peak %ofL
16	PASS	0.067672	0.115	58.8452	0.081935	0.1725	47.4986
17	PASS	0.061317	0.13235	46.3294	0.078142	0.198525	39.3613
18	PASS	0.064826	0.10222	63.4181	0.074392	0.15333	48.5176
19	PASS	0.050622	0.11842	42.7478	0.062871	0.17763	35.3944
20	PASS	0.045014	0.095612	47.0799	0.056173	0.143418	39.1673
21	PASS	0.037537	0.10714	35.0355	0.044061	0.16071	27.4165
22	PASS	0.039357	0.095612	41.1632	0.044393	0.143418	30.9536
23	PASS	0.051944	0.097826	53.0984	0.056066	0.146739	38.208
24	PASS	0.032522	0.095612	34.0146	0.036718	0.143418	25.6021
25	PASS	0.027639	0.095612	28.9075	0.031706	0.143418	22.1074
26	PASS	0.02754	0.095612	28.8039	0.032841	0.143418	22.8988
27	PASS	0.026333	0.095612	27.5415	0.029992	0.143418	20.9123
28	PASS	0.024912	0.095612	26.0553	0.029791	0.143418	20.7721
29	PASS	0.025089	0.095612	26.2404	0.02917	0.143418	20.3391
30	PASS	0.020853	0.095612	21.81	0.024026	0.143418	16.7524
31	PASS	0.020032	0.095612	20.9513	0.022703	0.143418	15.83
32	PASS	0.019166	0.095612	20.0456	0.022434	0.143418	15.6424
33	PASS	0.020437	0.095612	21.3749	0.02367	0.143418	16.5042
34	PASS	0.018066	0.095612	18.8951	0.021093	0.143418	14.7074
35	PASS	0.016987	0.095612	17.7666	0.019068	0.143418	13.2954
36	PASS	0.015888	0.095612	16.6172	0.018569	0.143418	12.9475
37	PASS	0.015922	0.095612	16.6527	0.018496	0.143418	12.8966
38	PASS	0.014166	0.095612	14.8161	0.016846	0.143418	11.7461
39	PASS	0.015572	0.095612	16.2867	0.018324	0.143418	12.7766
40	PASS	0.014836	0.095612	15.5169	0.017386	0.143418	12.1226

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page: 41 / 86

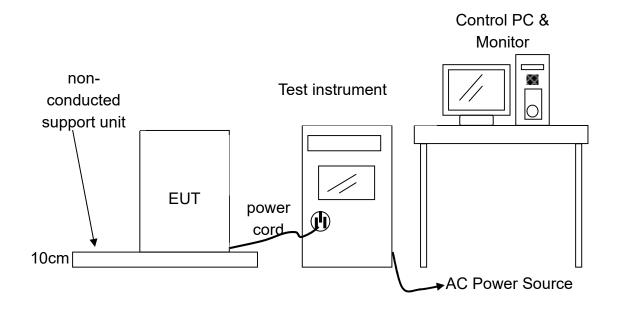
6. Voltage Fluctuations and Flickers Emission Measurement

6.1 Limits for Emission Measurement

- the short-term flicker indicator, P_{st}, shall not be greater than 1.0;
- the long-term flicker indicator, Plt, shall not be greater than 0.65;
- the relative steady-state voltage change, d_c, shall not exceed 3.3%;
- the voltage change with time, d(t), during a voltage change shall not exceed 3.3% for more than 500ms.
- the maximum relative voltage change, d_{max}, shall not exceed
 - a) 4% without additional conditions;
 - b) 6% for equipment which is switched manually
 - c) 7% for equipment which is attended whilst in use

SERTC Testing Center Co., Ltd. Page: 42 / 86

6.2 Test Procedures


- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per theuser's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters in the shielded room.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters in the shielded room.
- d. Decide the type of EUT to define the d_{max} limit and its corresponding test methods described in the relative standard.
- e. Maintain the supply voltage to be $\pm 2\%$ of the EUT's rated voltage and also the frequency to be $50\text{Hz} \pm 0.5\%$.
- f. Connects the EUT's power source to the mains power supplied by the test instrument.
- g. Operating the EUT as required and measuring the voltage fluctuation and flickersof EUT's power source.
- h. Verify the fluctuations of the test supply voltage to be less than 0.4 before and after the test.

SERTC Testing Center Co., Ltd. Page: 43 / 86 TEL.: 886-4-25253313

FAX.: 886-4-25252320

6.3 Test Configurations

6.4 Photographs of the Test Configurations

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

6.5 Test Results and data

Test Mode	Mode1	Final Test Result	Pass
Basic Standard	IEC61000-3-3	Test Voltage	230V/50Hz
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23 °C	Relative Humidity	62%
Test frequency	50Hz	PST Test time	10 minutes
Class	Voltage	Mode	Normal (4%)
PLT	1 PSTs		

Limitation		DC (%)	Dmax (%)	Tmax (s)	PST	PLT
Limitation		4	3.3	0.5	10 minutes	1 PSTs
	Test results					
PST no.	Status	DC (%)	Dmax (%)	Tmax (s)	PST	PLT
1	Pass	0.36769	0.51450	0.00000	0.15738	0.15738

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page: 45 / 86

7. Electrostatic Discharge (ESD) Immunity Test

7.1 Specifications of Immunity Test Requirement

- a. In the case of air discharge testing the climatic conditions shall be within the following ranges:
 - ambient temperature: 15°C to 35°C;
 - relative humidity: 30% to 60%;
 - atmospheric pressure: 86 KPa (860 mbar) to 106 KPa (1060 mbar).
- b. Test programs and software shall be chosen so as to exercise all normal modes of operation of the EUT. The use of special exercising software is encouraged, but permitted only where it can be shown that the EUT is being comprehensively exercised.

Report No.:21123CEAE1

- c. The test voltage shall be increased from the minimum to the selected test severity level, in order to determine any threshold of failure. The final severity level should not exceed the product specification value in order to avoid damage to the equipment.
- d. The test shall be performed with both air discharge and contact discharge. On reselected points at least 10 single discharges (in the most sensitive polarity) shall be applied on air discharge. On reselected points at least 10 single discharges (in the most sensitive polarity) shall be applied on contact discharge.
- e. For the time interval between successive single discharges an initial value of one second is recommended. Longer intervals may be necessary to determine whether a system failure has occurred.
- f. In the case of contact discharges, the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.
- g. In the case of painted surface covering a conducting substrate, the following procedure shall be adopted:
 - If the coating is not declared to be an insulating coating by the equipment manufacturer, then the
 pointed tip of the generator shall penetrate the coating so as to make contact with the conducting
 substrate.
 - Coating declared as insulating by the manufacturer shall only be submitted to the air discharge.
 - The contact discharge test shall not be applied to such surfaces.
- h. In the case of air discharges, the round discharge tip of the discharge electrode shall be approached as fast as possible (without causing mechanical damage) to touch the EUT. After each discharge, the ESD generator (discharge electrode) shall be removed from the EUT. The generator is then retriggered for a new single discharge. This procedure shall be repeated until the discharges are completed. In the case of an air discharge test, the discharge switch, which is used for contact discharge, shall be closed.

SERTC Testing Center Co., Ltd. Page: 46 / 86

7.2 **Test Severity Levels**

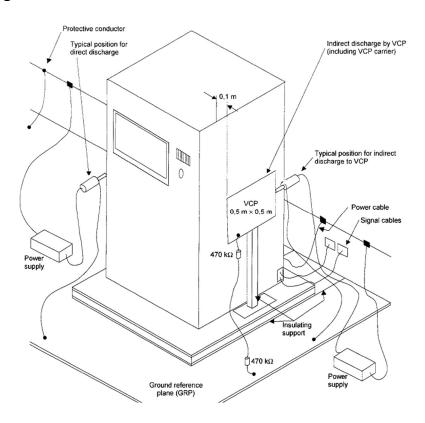
	Contact Discharge		Air Discharge		
Level	Test Voltage (KV) of	Level Test Voltage (KV) o			
	Contact discharge		Air Discharge		
1	±2	1	<u>±</u> 2		
2	±4	2	<u>±</u> 4		
3	±6	3	±8		
4	±8	4	±15		
Х	Specified	Х	Specified		
	Remark: "X" is an open level.				

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

7.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters above the ground reference plane in the shielded room. Also a HCP (Horizontal Coupling Plane) which was connected to the ground reference plane via a cable with a $470 \text{k}\Omega$ resister located at each end was placed on the wooden table and isolated with the EUT by an insulating support 0.5mm thick. The ground reference plane shall project beyond the EUT or HCP by at least 0.5m on all sides.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the ground reference plane in the shielded room. The ground reference plane shall project beyond the EUT by at least 0.5m on all sides.
- d. Keep the EUT 1m away from all other metallic walls in the shielded room as the minimum distance.
- e. The static electricity discharges shall be applied only to those points and surfaces of the EUT which are accessible to persons during normal use. Contact discharge is the preferred test method and it is applied to the conductive surfaces of EUT and coupling planes. Air discharge shall be used where contact discharge cannot be performed and it is applied to the insulating surfaces of EUT.
- f. The discharge return cable of the generator shall be kept at a distance of at least 0.2m from the EUT whilst the discharge is being applied.
- g. The time interval between successive single discharges was at least 1 second.
- h. Select appropriate points of the EUT for contact discharge and put marks on it to indicate the tested point(s). Then start the contact discharge with the tip of the discharge electrode to touch the EUT before the discharge switch is operated.
- i. Use the round discharge tip of the discharge electrode to scan the EUT to select the points for air discharge. Then start the air discharge by approaching the discharge electrode as fast as possible to touch the EUT. After each discharge, the ESD generator shall be removed from the EUT.
- j. The indirect HCP discharge test is applied at the front edge of each HCP opposite the center point of each unit of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

SERTC Testing Center Co., Ltd. Page: 48 / 86



k. The indirect VCP (Vertical Coupling Plane) discharge test is applied to the center of one vertical edge of the coupling plane. The VCP, of dimensions 0.5m×0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. It shall be applied with sufficient different positions such that the four faces of the EUT are completely illuminated.

SERTC Testing Center Co., Ltd. Page: 49 / 86

7.4 Test Configurations

7.5 Photographs of the Test Configurations

SERTC Testing Center Co., Ltd.

7.6 Test Results

Test Mode	Mode 1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23 °C	Relative Humidity	56 %
Atmospheric Pressure	1005 hPa		

Pass performance criteria	Α
Required performance criteria	В
Basic Standard	IEC 61000-4-2
Product Standard	IEC 61000-6-2
Test Voltage	±2 / ±4 / ±8 KV for air discharge, ±4 KV for contact discharge

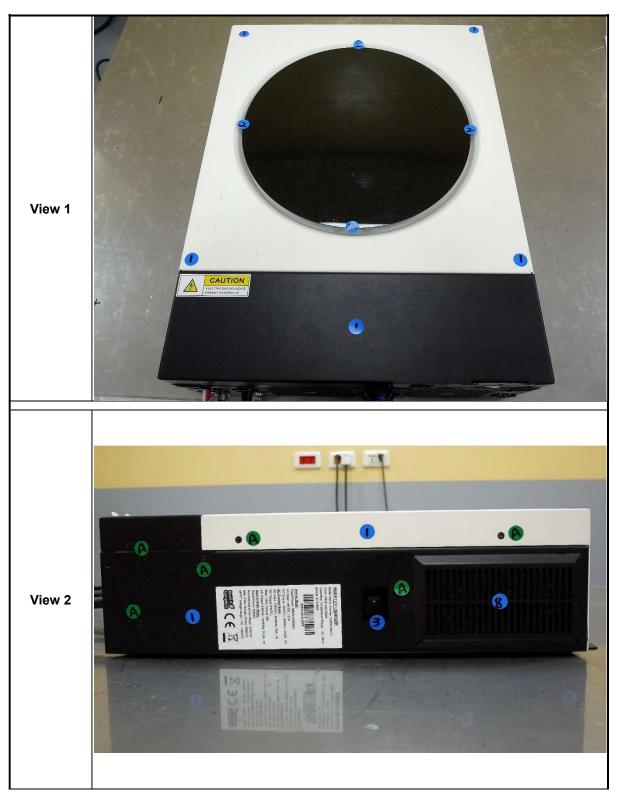
		Contact Discharge							
		10 times / each							
	Voltage	2	KV	4 1	KV	6 I	(V	8 KV	
No	\ Point\Polarity	+	_	+	_	+	1	+	1
	HCP Right			Α	A				
	HCP Left			Α	Α				
	HCP Rear			Α	Α				
	HCP Front			Α	Α				
	VCP Right			Α	Α				
	VCP Left			Α	Α				
	VCP Rear			Α	Α				
	VCP Front			Α	Α				
Α	Screw			Α	А				
В	RJ45 shield			Α	Α				
С	GND screw			Α	Α				
D	Fuse holder			Α	Α				

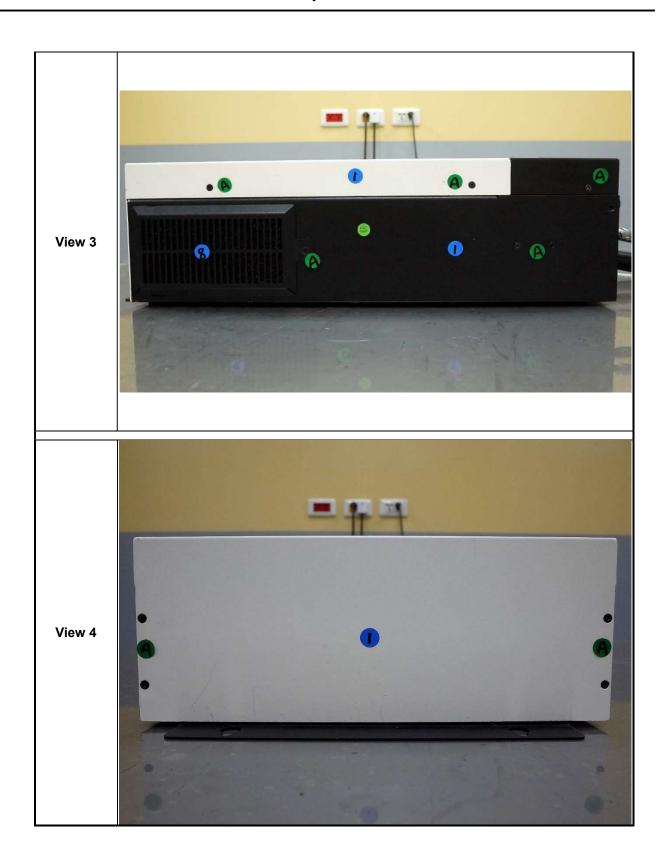
Note: "A" means the EUT function is normal working during the test.

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

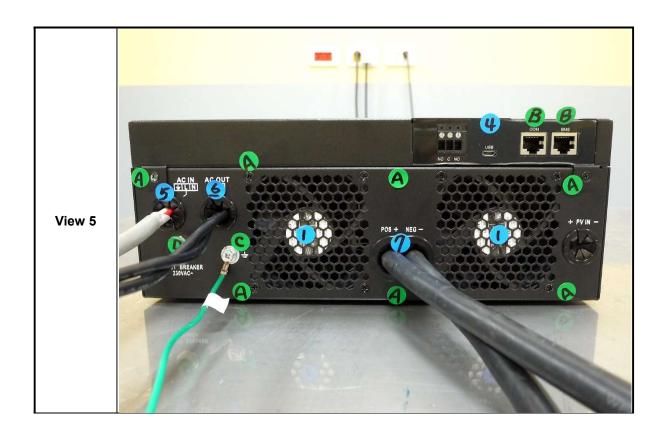
		AIR Discharge							
		10 times / each							
	Voltage	2	KV	4	KV	8 1	KV	15	KV
N	lo\Point\Polarity	+	_	+	_	+	_	+	_
1	Enclosure	Α	А	Α	А	А	Α		
2	Screen edge	Α	А	Α	А	Α	Α		
3	Switch	Α	Α	Α	А	Α	Α		
4	USB port	Α	А	Α	А	Α	Α		
5	AC input	Α	А	Α	А	Α	Α		
6	AC output	Α	Α	Α	А	Α	Α		
7	DC output	Α	А	Α	А	А	А		
8	Vents	Α	Α	Α	Α	Α	Α		

Note: "A" means the EUT function is normal working during the test.


Observation of Performance during Test


(1) Normal operation condition specified by manufacturer during the test.

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320



7.7 Photographs of the Test Points on the EUT for ESD Test

8. Radiated Electromagnetic Field (RS) Immunity Test

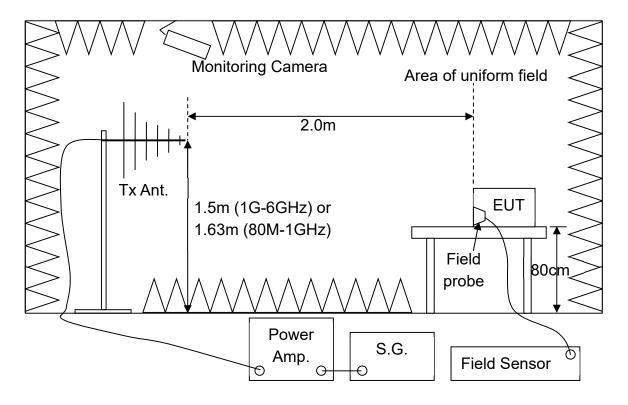
8.1 Test Requirement

- **a.** The equipment to be tested is placed in the center of the enclosure on a wooden table. The equipment is then connected to power and signal leads according to pertinent installation instructions.
- **b.** The antenna which is enabling the complete frequency range of 80-1000 MHz is placed 2m away from the equipment. The required field strength is determined by placing the field strength meter(s) on top of or directly alongside the equipment under test and monitoring the field strength meter via a remote field strength indicator outside the enclosure while adjusting the continuous-wave to the applicable antennae.
- **C.** The test is normally performed with the antenna facing the most sensitive side of the EUT. The polarization of the field generated by the bucolical antenna necessitates testing each position twice, once with the antenna positioned vertically and again with the antenna positioned horizontally. The circular polarization of the field from the log-spiral antenna makes a change of position of the antenna unnecessary.
- **d.** At each of the above conditions, the frequency range is swept 80-1000 MHz, pausing to adjust the R.F. signal level or to switch oscillators and antenna. The rate of sweep is in the order of 1.5*10-3 decades/s. The sensitive frequencies or frequencies of dominant interest may be discretely analyzed.

8.2 Test Severity Level

Frequency Band : 80-6000 MHz				
Level Test field strength (V/m)				
1	1 1			
2 3				
3	3 10			
X Specified				
R	Remark: "X" is an open class.			

SERTC Testing Center Co., Ltd. Page: 56 / 86


8.3 Test Procedures

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters and 2 meters away from the transmitting antenna in the fully anechoic chamber.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters and 2meters away from the transmitting antenna in the fully anechoic chamber. Also if the floor-standing equipment which is capable of being stood on a non-conducting 0.8m high platform may be so arranged.
- d. All EUT's individual faces shall be fully enclosed by the "uniform area" and its wires shall be arranged parallel to the uniform area of the field.
- e. Before testing the EUT, the intensity of the established field strength is checked by placing the field sensor at a calibration grid point to give the calibrated field strength to measure the EUT.
- f. After the calibration has been verified, the test field can be generated using the values obtained from the calibration.
- g. Perform the test with the specified immunity level inthe test frequency range and with the specified modulation type.
- h. The transmitting antenna is normally facing each of the four sides of the EUT with two polarizations (Vertical and Horizontal) to perform the test.
- The dwell time at each frequency shall be not less than the time necessary for the EUT to be exercised and be able to respond.
- j. The sensitive frequencies of EUT shall be analyzed separately, if any.
- k. Record the performance of the EUT.

SERTC Testing Center Co., Ltd. Page: 57 / 86

8.4 Test Configurations

8.5 Photographs of the Test configurations

Page: 59 / 86

8.6 Test Result and Data

Test Mode	Mode 1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	25°C	Relative Humidity	50 %
Atmospheric Pressure	1006 hPa		

Pass performance criteria	Α
Required performance criteria	Α
Basic Standard	IEC 61000-4-3
Product Standard	IEC 61000-6-2
Frequency Range	80~1000 MHz, 1400M-6000MHz
Modulation	80% AM1kHz modulation
Dwell time	3 S
Frequency Step Size	1 %

Frequency (MHz)	Antenna Polarization	Face	Field strength (V/m)	Result
80~1000	Vertical	Front	10	А
80~1000	Vertical	Rear	10	Α
80~1000	Vertical	Left	10	А
80~1000	Vertical	Right	10	А
80~1000	Horizontal	Front	10	А
80~1000	Horizontal	Rear	10	А
80~1000	Horizontal	Left	10	А
80~1000	Horizontal	Right	10	А

Note: "A" means the EUT function is normal working during the test.

Frequency (MHz)	Antenna Polarization	Face	Field strength (V/m)	Result
1400-6000	Vertical	Front	3	Α
1400-6000	Vertical	Rear	3	Α
1400-6000	Vertical	Left	3	А
1400-6000	Vertical	Right	3	А
1400-6000	Horizontal	Front	3	А
1400-6000	Horizontal	Rear	3	А
1400-6000	Horizontal	Left	3	А
1400-6000	Horizontal	Right	3	А

Observation of Performance during Test

(1) Normal operation condition specified by manufacturer during the test.

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

9. Electrical fast transient / burst (EFT) Immunity Test

9.1 Test Procedure

a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.

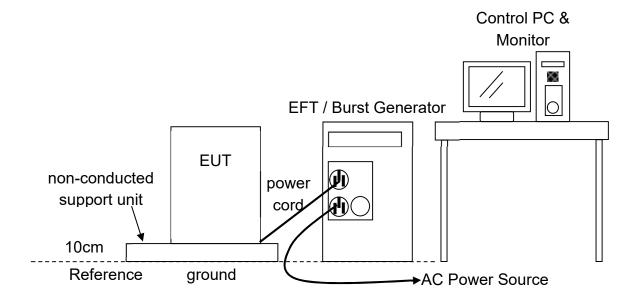
Report No.:21123CEAE1

- b. If the EUT is tabletop equipment, it was placed on a non-conducted support with a height 0.1 meters above the ground reference plane. Also the ground reference plane is placed on a wooden table with a height of 0.8 meters in the shielded room. The ground reference plane shall project beyond the EUT by at least 0.1m on all sides.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the ground reference plane in the shielded room. The ground reference plane shall project beyond the EUT by at least 0.1m on all sides.
- d. The test generator and the coupling/decoupling network shall be placed directly on, and bonded to, the ground reference plane.
- e. All cables to the EUT shall be placed on the insulation support 0.1 m above the ground reference plane. Cables not subject to electrical fast transients shall be routed as far as possible from the cable under test to minimize the coupling between the cables.
- f. Keep the EUT 0.5m away from all other conductive structures, except the ground reference plane beneath the EUT as the minimum distance. Also if any, the minimum distance between the coupling clamp and all other conductive structures, except the ground reference plane beneath the coupling clamp and EUT shall be 0.5m.
- g. Keep the length of the power and signal lines, if required, between the coupling device and the EUT to be 0.5m. If a non-detachable supply cable more than 0.5m long, the excess length of this cable shall be folded to avoid a flat coil and situated at a distance of 0,1 m above the ground reference plane.
- h. Connect the EUT's power source to the appropriate power through the coupling devices and perform the specified test level.
- i. If any, connect all the I/O signal, data and control lines between EUT and accessories/support units through the coupling devices and perform the specified test level.
- i. Record the performance of the EUT.

SERTC Testing Center Co., Ltd. Page: 60 / 86 TEL.: 886-4-25253313

FAX.: 886-4-25252320

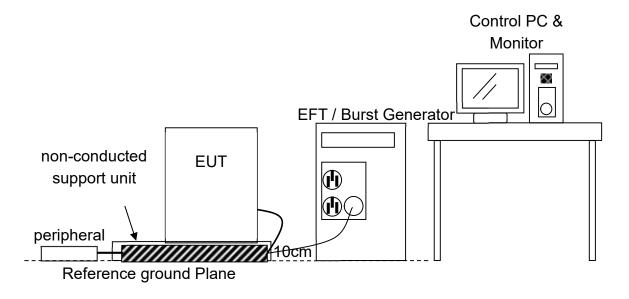
9.2 Test Severity Levels


The following test severity levels are recommended for the fast transient/burst test :

Open circuit output test voltage ± 10%					
Level	On Power Supply	On I/O signal, data and control line			
1	0.5 KV	0.25 KV			
2	1.0 KV	0.50 KV			
3	2.0 KV	1.00 KV			
4	4.0 KV	2.00 KV			
Х	Specified	Specified			

Remark : " X " is an open level. The level is subject to negotiation between the user and manufacturer or is specified by the manufacturer.

9.3 **Test Configurations**


Power supply port Test


SERTC Testing Center Co., Ltd. Page: 61 / 86

I/O signal, data and control port Test (if any)

9.4 Photographs of the Test Configurations

Festing Center Co., Ltd. Page: 62 / 86

9.5 Test Result and Data

Test Mode	Mode1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23 °C	Relative Humidity	56 %
Atmospheric Pressure	1005 hPa		

Pass performance criteria	Α	
Required performance criteria	В	
Basic Standard	IEC 61000-4-4	
Product Standard	IEC 61000-6-2	
Test Voltage	On AC input power port -±2.0 KV	
Test voitage	On AC output power port -	
Pulse	5/50 ns	
Burst	15m/300ms	
Repetition Rate	5 kHz	
Test time	1 min/each condition	

		For AC input power port				
Phase	<u>1</u> 1	¢V	<u>2</u> k	V	kV	
Filase	+	-	+	1	+	_
L1	-	-	A	Α		
N	-	-	А	Α		
PE	-	-	А	Α		
L1-N	-	-	А	Α		
L1-PE	-	-	А	Α		
N-PE	-	-	А	Α		
L1-N-PE	-	-	Α	А		

Note: "A" means the EUT function is normal working during the test.

Observation of Performance during Test

(1) Normal operation condition specified by manufacturer during the test.

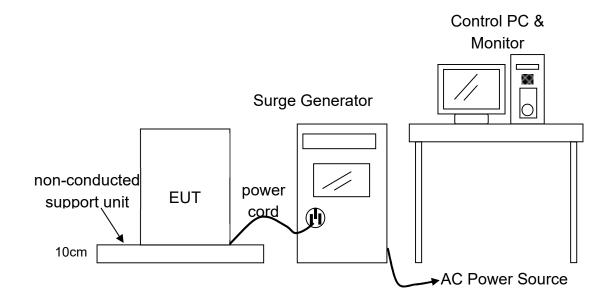
SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

10. Surge Immunity Test

10.1 Test Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height of 0.8 meters in the shielded room.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the ground reference plane in the shielded room.
- d. For the surge test applied to EUT's power supply and unshielded unsymmetrical interconnection lines, if required, the capacitive coupling network are used.
- e. If any, the surge test applied to the unshielded symmetrically interconnection lines of EUT, the gas arrestors coupling network are used.
- f. Keep the interconnection line, if required, or power cord between the EUT or its power source and the coupling / decoupling network to be 2m in length (or shorter).
- g. The surges have to be applied synchronized to the voltage phase at the zero-crossing and the peak value of the a.c. voltage wave (positive and negative).
- h. All lower levels including the selected test level shall be satisfied and the test voltage has to be increased by steps up to the specified test level.
- i. Connect the EUT's power source to the appropriate power through the coupling devices and perform the specified test level.
- j. If any, connect all the interconnection lines between EUT and accessories/support units through the coupling devices and perform the specified test level.
- k. Record the performance of the EUT.

SERTC Testing Center Co., Ltd. Page: 64 / 86



10.2 Test Severity Level

Level	Open-circuit test voltage (kV)				
	Line-to-line	Line-to-ground ^b			
1		0.5			
2	0.5	1.0			
3	1.0	2.0			
4	2.0	4.0			
X a	Special	Special			

^a "X" and be any level, above, below or in between the others. The level shall be specified in the dedicated equipment specification.

10.3 Test Configurations

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

b For symmetrical interconnection lines the test can be applied to multiple lines simultaneously with respect to ground, i.e. "lines to ground".

$10.4 \ \textbf{Photographs of the Test Configurations}$

10.5 Test Result and Data

Test Mode	Mode 1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23°C	Relative Humidity	56%
Atmospheric Pressure	1005 hPa		

Pass performance criteria	A
Required performance criteria	В
Basic Standard	IEC 61000-4-5
Product Standard	IEC 61000-6-2
Test Voltage	On AC input power port \pm 0.5 kV, \pm 1.0 kV On AC output power port \pm 0.5 kV, \pm 1.0 kV, \pm 2.0 kV
Waveform	On Power Supply1.2/50µs(8/20µs)
Repetition rate	60 sec
Test time	5 time/each condition

For AC input power port						
Voltage	Phase	Polarity	0°	90°	180°	270°
0.5kV, 1kV	L1-N	+	А	А	Α	Α
		_	А	А	Α	Α
0.5kV, 1kV,2kV	L1-PE	+	А	А	Α	Α
		_	Α	Α	Α	Α
0.5kV, 1kV,2kV	N-PE	+	Α	Α	Α	Α
		_	Α	Α	А	Α

Note: "A" means the EUT function is normal working during the test.

Observation of Performance during Test

(1) Normal operation condition specified by manufacturer during the test.

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

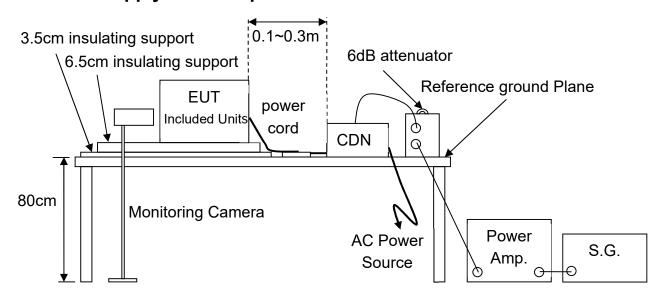
[&]quot;B" means the following description:

11. Conducted disturbances (CS) Immunity Test

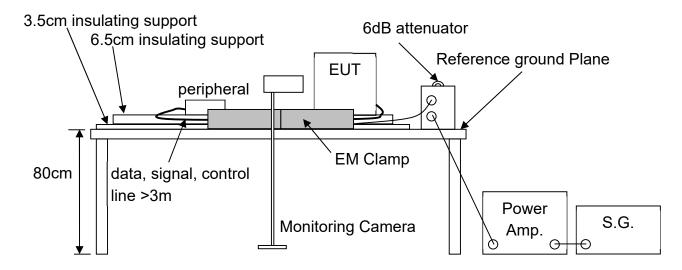
11.1 Test Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a non-conducted support with a height 0.1 meters above the ground reference plane. Also the ground reference plane is placed on a wooden table with a height of 0.8 meters in the shielded room.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the ground reference plane in the shielded room.
- d. Decide the injection methods and test points according to the relative standard.
- e. All relevant cables shall be provide with the appropriate coupling and decoupling devices at a distance between 0.1m and 0.3m from the projected geometry of the EUT on the ground reference plane.
- f. All cables connected to each Auxiliary Equipment (AE), other than those being connected to the EUT, shall not be bundled nor wrapped and shall be kept between 30mm and 50mm above the ground reference plane.
- g. The test shall be performed with the test generator connected to each of the coupling and decoupling devices in turn while the other non-excited RF input ports of the coupling devices are terminated by a 50 load resistor.
- h. Perform the test with the specified immunity level inthe test frequency range and with the specified modulation type.
- i. The dwell time at each frequency shall be not less than the time necessary for the EUT to be exercised and be able to respond.
- j. The sensitive frequencies of EUT and harmonics or frequencies of dominant interest shall be analyzed separately, if any.
- k. Record the performance of the EUT.

SERTC Testing Center Co., Ltd. Page: 68 / 86



11.2 Test Severity Levels


Level	Voltage Level (e.m.f.)	
1	1 V	
2	3 V	
3	10 V	
Х	Specified	
NOTE - x is an open clas	ss. This level can be specified in the product specification.	

11.3 Test Configurations

Power supply and LAN port Test

I/O signal, data and control port Test (if any)

SERTC Testing Center Co., Ltd.

TEL.: 886-4-25253313

FAX.: 886-4-25252320

11.4 Photographs of the Test Configurations

11.5 Test Result and Data

Test Mode	Mode1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	Dylan
Temperature	25°C	Relative Humidity	50%
Atmospheric Pressure	1006 hPa		

Pass performance criteria	Α
Required performance criteria	Α
Basic Standard	IEC 61000-4-6
Product Standard	IEC 61000-6-2
Frequency Range	0.15~-80MHz
Modulation	AM 80% , 1KHz sine wave
Dwell time	3 S
Frequency Step Size	1 %
Coupling mode	CDN

For AC input power port				
Frequency	Test Mode	Voltage(V)	Result	
0.15 ~ 80MHz	Power(M3)	10	A	

Observation of Performance during Test

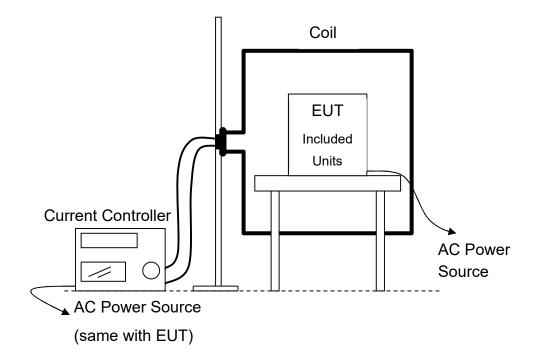
(1) Normal operation condition specified by manufacturer during the test.

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

12. Power frequency magnetic field (PFM) Immunity Test

12.1 Test Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height 0.8 meters.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the ground reference plane (minimum size is 1m 1m) in the shielded room.
- d. For the tabletop equipment, the induction coil with a square form in 1m side (or diameter) is used and shall enclose the EUT placed at its center. For the floorstanding equipment, the induction coil shall be able to envelop the EUT and made of conductors of relatively small cross-section.
- e. The dimensions of induction coil shall be able to keep the magnetic fields over the whole volume of the EUT with an acceptable variation of ± 3 dB.
- f. The test generator shall be placed at less than 3m distance from the induction coil.
- g. Keep all cables of EUT to be exposed to the magnetic field for 1m of their length.
- h. Before the test, maintain the electromagnetic field value of the test environment to be at least 20dB lower than the selected test level. Then tune up the currents of the test generator and use the Guass Meter to calibrate the specified test level at the center of the induction coil.
- i. Perform the test with the specified magnetic field by rotating the induction coil to three different orientations to generate X, Y and Z directed magnetic field sequentially.
- j. Record the performance of the EUT.


SERTC Testing Center Co., Ltd. Page: 72 / 86

12.2 Test Severity Levels

Level	Magnetic field strength (A/m)		
1	1		
2	3		
3	10		
4	30		
5	100		
X ¹⁾	special		
NOTE 1 "X" is an open level. This level can be given in the product specification.			

12.3 Test Configurations

12.4 Photographs of the Test Configurations

12.5 Test Result and Data

Test Mode	Mode 1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	David
Temperature	22°C	Relative Humidity	60%
Atmospheric Pressure	1006 hPa		

Pass performance criteria	Α
Required performance criteria	Α
Basic Standard	IEC 61000-4-8
Product Standard	IEC 61000-6-2
Power FrequencyMagnetic Field	<u>50</u> Hz, <u>30</u> A/m

Coil Orientation	Testing duration	Results
X-axis	1.0 Min	A
Y-axis	1.0 Min	Α
Z-axis	1.0 Min	А

Note: "A" Mean the EUT function is normal working during the test.

Observation of Performance during Test

(1) Normal operation condition specified by manufacturer during the test.

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

13. Voltage Dips and Voltage Interruptions Immunity

13.1 Test procedure

a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.

Report No.:21123CEAE1

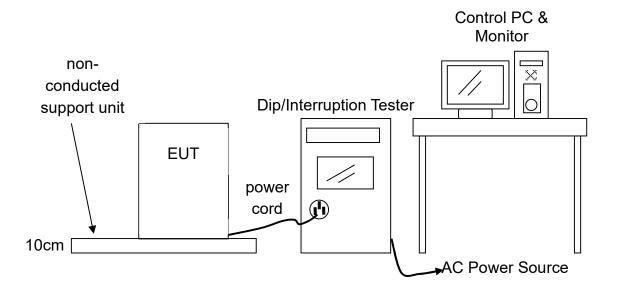
- b. If the EUT is tabletop equipment, it was placed on a wooden table with a height 0.8 meters above the ground reference plane in the shielded room.
- c. If the EUT is floor-standing equipment, it was placed on a non-conducted support with a height of 0.1 meters above the ground reference plane in the shielded room.
- d. The test shall be performed with the EUT connected to the test Generator with the shortest power supply cable as specified by the manufacturer.
- e. If any, tests on the three-phase EUT are accomplished by using three sets of equipment mutually synchronized.
- f. During the tests, the main voltage for testing is monitored within an accuracy of 2% and the zero crossing control of the generators must have an accuracy of $\pm 10^{\circ}$.
- g. The EUT shall be tested for each selected combination of test level and duration with a sequence of three dips/interruptions with intervals of 10 sec. minimum (between each test event). Each representative mode of operation shall be test.
- h. Abrupt changes in supply voltage shall occur at zero crossings of the voltage and additional angles preferably selected from 0°, 45°, 90°, 135°, 180°, 225°, 270°, 315° on each phase.
- Connect the EUT's power source to the appropriate power through the test generator and perform the specified test level.
- Record the performance of the EUT.

SERTC Testing Center Co., Ltd. Page: 76 / 86

TEL.: 886-4-25253313 FAX.: 886-4-25252320

13.2 Test severity

a. Source voltage and frequency: AC 230V / 50Hz, Single phase.


b. Test of interval: 10 sec.

c. Level and duration: Sequence of 3 dips/interrupts.

.

Voltage dips and Interrupt reduction (%)	Test Duration (period)	Required performance criteria
>95%	250	С
30%	25	С
60%	10	С
>95%	1	В

13.3 **Test Configurations**

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

13.4 Photographs of the Test Configurations

13.5 Test Result and data

Test Mode	Mode 1	Final Test Result	Pass
Test Date	Mar 19,2021	Test Engineer	David
Temperature	23°C	Relative Humidity	62%
Atmospheric Pressure	1006 hPa		

Pass performance criteria	Afor voltage interruption, A/A/A for voltage dips		
Required performance criteria	C for voltage interruption, C/C/B for voltage dips		
Basic Standard	IEC 61000-4-34		
Product Standard	IEC 61000-6-2		

Voltage(UT): AC <u>230</u> V <u>50</u> Hz Interval(s) : <u>10s</u> Times : <u>3</u>						
Test mode	Test level reduction %	Durations (period)	Result			
Voltage interruptions	>95%	250	А			
	30%	25	А			
Voltage dips	60%	10	А			
	>95%	1	А			

Note: "A" Mean the EUT function is normal working during the test.

The EUT has DC battery backup system, so the working status would follow manufacturer specification to definition.

Observation of Performance during Test

- (1) Normal operation condition specified by manufacturer during the test.
- (2) In 0% 1cycle amd 0% 250 cycles test, the output is changed from AC output mode to battery mode. When the disturbance stops, it will automatically recover, but the lamp load status is keep, so the judgment is A

SERTC Testing Center Co., Ltd. Page: 79 / 86

TEL.: 886-4-25253313 FAX.: 886-4-25252320

14. List of Measuring Equipment

Conducted Emission					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
EMI test receiver	R&S	ESR7	102004	5/11/2020	5/10/2021
Receiver	R&S	ESHS10	835499/012	10/30/2020	10/29/2021
LISN	INTRX	LIN63-4	1803001	3/9/2021	3/8/2022
Coaxial Cable	SUHNER	RG214	C001- 1358175	07/16/2020	07/15/2021
Attenuator	JYEBAO	FAT- NM5NF5T6G2W10	ATT002	9/24/2020	9/23/2021
Attenuator	JYEBAO	FAT- BM5BF5T3G2W10	ATT004	1/15/2021	1/14/2022
test software	Audix	E3	20180316b	NA	NA

Radiated Emission below 1GHz						
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date	
EMI test receiver	R&S	ESR7	102004	5/11/2020	5/10/2021	
Loop antenna	SCHWARZBECK	FMZB 1519B	00013	4/28/2020	4/27/2021	
Amplifier	ITGA	ITPA-301	1701010003 30014	3/4/2021	3/3/2022	
Bi-conical antenna	SunAR	JB1	A030818	4/10/2020	4/9/2021	
Attenuator	JYEBAO	FAT- NM5NF5T62GW6	ATT001	3/24/2020	3/23/2021	
Coaxial cable	SUHNER	SUCOFLEX 104	MY371154	7/16/2020	7/15/2021	
Coaxial cable	SUHNER	SUCOFLEX 104	803600	7/16/2020	7/15/2021	
Coaxial cable	SUHNER	SUCOFLEX 104	801734	7/16/2020	7/15/2021	
test software	Audix	E3	20180316b	NA	NA	

Harmonic and Flicker Emissions, DIP					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Power source	N4L	N4A30	91J-12901	2/18/2021	2/17/2022
Voltage drop simulator	EMCLioncel	VDS-1103	21101	2/18/2021	2/17/2022
Adjust power module	EMCLioncel	RGL-232	21101	2/18/2021	2/17/2022
Flicker Impedance Network	N4L	IMP323	91G-12804	12/8/2020	12/7/2021
power Analyzer	N4L	PPA5531	166-05417	12/8/2020	11/7/2021
Test software	N4L	IEC_Soft	2.6	NA	NA

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page: 80 / 86

Report No.:21123CEAE1

ESD					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
ESD Simulator	NoiseKen	ESS-S3011A	ESS1848144	2/23/2021	2/22/2022
ESD Gun	NoiseKen	GT-30RA	ESS1848164	2/23/2021	2/22/2022

RS					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Signal generator	Keysight	N5171B	MY57281132	3/4/2021	3/5/2022
Electric field probe	Narda	EP 601	711WX80850	2/26/2021	2/25/2023
Power sensor	Keysight	U2004A	MY57420018	3/4/2021	3/3/2022
Power Amplifier	fflight communication	NTWPA-0810200E	18103222	NA	NA
Power Amplifier	fflight communication	NTWPA-106050	18113274	NA	NA
Bi-log Antenna	SunAR	ATL80M1G	351399	NA	NA
Double log antenna	Schwarzbeck	STLP9149	627	NA	NA
test software	Audix	12	20181211	NA	NA

EFT					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
EFT Burst Generator	EMCLioncel	EFT-406CB	180803	2/17/2021	2/16/2022
Coupling Decoupling Networks	EMCLioncel	EFT-433CB	180803	2/17/2021	2/16/2022
EMC clamp	EMCLioncel	EFTC	18071802	2/17/2021	2/16/2022

SURGE					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Surge controller	EMCLioncel	SCU-614A+	0180202	NA	NA
Surge generator	EMCLioncel	LSG-510CB+	0171101	2/18/2021	2/17/2022
coupling Device Network	EMCLioncel	CDN-5310P	0180302	2/18/2021	2/17/2022
Surge ethernet CDN	3C TEST	CDN-405AF8	ES1011301	NA	NA

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320 Page: 81 / 86

CS					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
Signal generator	Keysight	N5171B	MY57281132	3/4/2021	3/3/2022
Power Amplifier	fflight communication	NTWPA-4K0100	18103215	NA	NA
100W attunator	JPT	JPTATT-03-6	ATT17001	3/12/2021	3/11/2022
Couple device network	EMC Liconcel	CDN-M5-32	181001	3/10/2021	3/9/2022
Couple device network	EMC Liconcel	CDN-M3-16	181103	3/10/2021	3/9/2022
Couple device network	EMC Liconcel	CDN-M2-16	018074	3/10/2021	3/9/2022
EM Clamp	FRANKONIA	EMCL-20	18101672-0113	3/10/2021	3/9/2022
Power sensor	Keysight	U2004A	MY57420018	3/4/2021	3/3/2022
test software	Audix	12	20181211	NA	NA

PFM					
Instrument	Manufacturer	Model No.	Serial No.	Calibration Date	Valid Date
power frequency magnetic	EMCLioncel	PMF-801C-C	180801	2/18/2021	2/17/2022
Magnetic coil	EMCLioncel	PMF-801C-A	180903	2/18/2021	2/17/2022

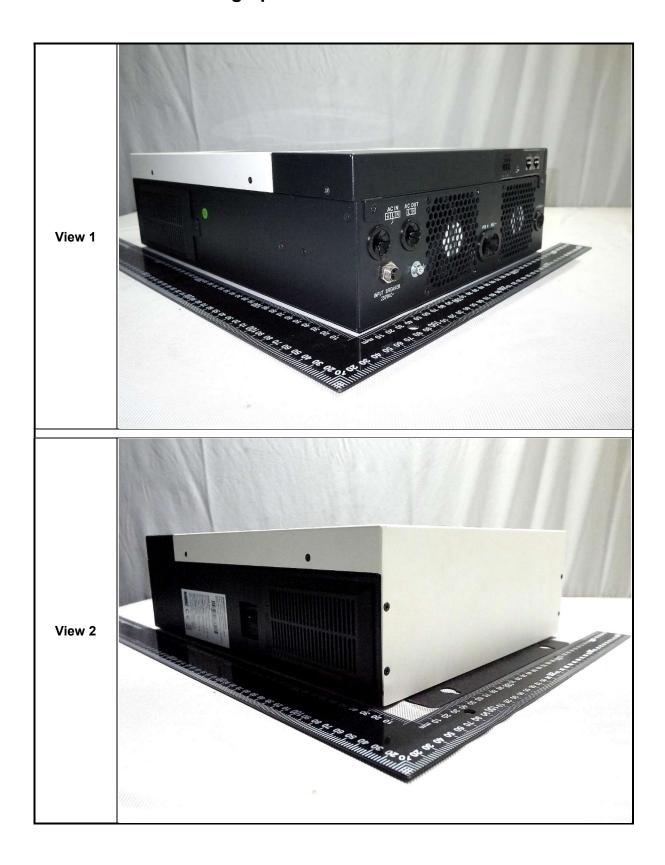
Note:NA mean is no calibration required.

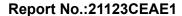
SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320

15. Measurement Uncertainty

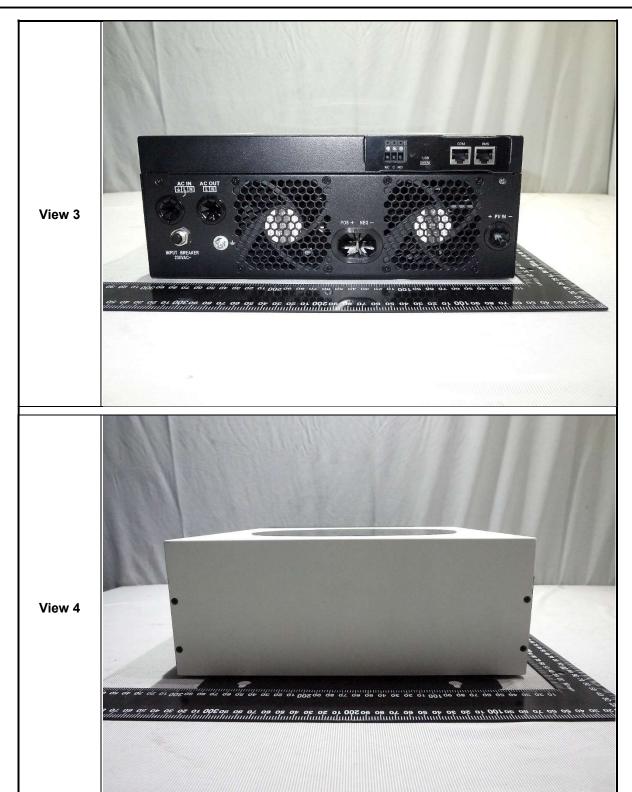
The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are in table.

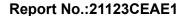
Please note that the test facility, environment and personal training minimize uncertainty of measurement due to the factor, the test results to determine refer to standard requirement, the measurement uncertainty values are not considered into the test data to determine the results.


Electromagnetic Interference					
Measurement Item Measurement Frequency		Polarization	Uncertainty		
Conducted Emission	150 kHz ~ 30 MHz	LINE / NEUTRAL	± 3.47dB		
Radiated Emission	30 MHz ~ 1,000 MHz	Vertical / Horizontal	± 4.4 dB		
Tradiated Efficient	1,000 MHz ~ 6,000 MHz	Vertical / Horizontal	± 5.99 dB		
Electromagnetic Susceptib	oility				
Measurement		Item	Uncertainty		
			Rise time Tr ± 12.7% ns		
Electrostatic Discharges (ES	:ח)		Peak current lp ± 3.46% A		
Liectrostatic Discharges (LC	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Current at 30 ns ± 3.46% ns		
			Current at 60 ns ± 3.46% ns		
Radiated RF electromagnetic	c Fields (Level Setting)		± 2.48dB		
			CDN		
			V peak ± 9.4% V		
Electrical Fast Transients an	d burnete		Rise time ±4.8% ns		
Electrical Fast Transferts an	u bursis		Clamp		
			V peak ±8.6% V		
			Rise time ±3.06% ns		
C			V peak = ± 8.6% V		
Surges			Rise time = ± 8.3% ns		
Canada at Diatanta ana ana ina	durant bu DE Galda		M2/M3/M5 ± 1.144 dB		
Conducted Disturbances, inc	auced by RF fields		Clamp ± 2.094 dB		
Davier fra successi Manage C. 5	-:-I-I		Current ± 3.69 % A		
Power-frequency Magnetic Field			Magnetic file ± 1%		
Voltage Dips, Interruptions, a	and variations		± 10% V		


SERTC Testing Center Co., Ltd. Page: 83 / 86

TEL.: 886-4-25253313 FAX.: 886-4-25252320




16. Attachment 1 – Photographs of EUT

SERTC Testing Center Co., Ltd. TEL.: 886-4-25253313 FAX.: 886-4-25252320